Shielding design for a laser-accelerated proton therapy system.

نویسندگان

  • J Fan
  • W Luo
  • E Fourkal
  • T Lin
  • J Li
  • I Veltchev
  • C-M Ma
چکیده

In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 x 10(21) W cm(-2). Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neutron deep-penetration calculations and shielding design of proton therapy accelerators

Proton therapy accelerators have become increasingly popular for cancer treatment in recent years. In Taiwan, the first proton treatment center equipped with a 235 MeV proton cyclotron in Linkou Chang Gung Memorial Hospital is ready for beam commissioning. Proton therapy accelerators in the energy range could potentially produce intense secondary neutrons, which must be carefully evaluated and ...

متن کامل

Shielding verification and neutron dose evaluation of the Mevion S250 proton therapy unit

For passive scattering proton therapy systems, neutron contamination is the main concern both from an occupational and patient safety perspective. The Mevion S250 compact proton therapy system is the first of its kind, offering an in-room cyclotron design which prompts more concern for shielding assessment. The purpose of this study was to accomplish an in-depth evaluation of both the shielding...

متن کامل

Advanced Gabor Lens Lattice for Laser Driven Hadron Therapy and Other Applications*

The application of laser accelerated ion beams in hadron therapy requires a beam optics with unique features. Due to the spectral and spatial distribution of laser accelerated protons a compact ion optical system with therapy applications, based on Gabor space charge lenses for collecting, focusing and energy filtering the laser produced proton beam, has significant advantages compared with oth...

متن کامل

Secondary Particles Produced by Hadron Therapy

Introduction Use of hadron therapy as an advanced radiotherapy technique is increasing. In this method, secondary particles are produced through primary beam interactions with the beam-transport system and the patient’s body. In this study, Monte Carlo simulations were employed to determine the dose of produced secondary particles, particularly neutrons during treatment. Materials and Methods I...

متن کامل

Designing an approprate solenoid and magnetic field for the HZDR laser-driven beamline

Nowadays, due to the high costs and large dimensions of the conventional proton accelerators, other optimal methods for producing the proton beam have been studied. Using of Laser-driven proton accelerators is one of the important and new methods. In laser-driven ion acceleration, a highly ultra-intense laser pulse interacts with solid density targets and will create a plasma media that will ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 52 13  شماره 

صفحات  -

تاریخ انتشار 2007